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Abstract

Background: Mass drug administration and mass-screen-and-treat interventions have been used to interrupt
malaria transmission and reduce burden in sub-Saharan Africa. Determining which strategy will reduce costs is an
important challenge for implementers; however, model-based simulations and field studies have yet to develop
consensus guidelines. Moreover, there is often no way for decision-makers to directly interact with these data and/
or models, incorporate local knowledge and expertise, and re-fit parameters to guide their specific goals.

Methods: We propose a general framework for comparing costs associated with mass drug administrations and
mass screen and treat based on the possible outcomes of each intervention and the costs associated with each
outcome. We then used publicly available data from six countries in western Africa to develop spatial-explicit
probabilistic models to estimate intervention costs based on baseline malaria prevalence, diagnostic performance,
and sociodemographic factors (age and urbanicity). In addition to comparing specific scenarios, we also develop
interactive web applications which allow managers to select data sources and model parameters, and directly input
their own cost values.

Results: The regional-level models revealed substantial spatial heterogeneity in malaria prevalence and diagnostic
test sensitivity and specificity, indicating that a “one-size-fits-all” approach is unlikely to maximize resource
allocation. For instance, urban communities in Burkina Faso typically had lower prevalence rates compared to rural
communities (0.151 versus 0.383, respectively) as well as lower diagnostic sensitivity (0.699 versus 0.862,
respectively); however, there was still substantial regional variation. Adjusting the cost associated with false negative
diagnostic results to included additional costs, such as delayed treated and potential lost wages, undermined the
overall costs associated with MSAT.

Conclusions: The observed spatial variability and dependence on specified cost values support not only the need
for location-specific intervention approaches but also the need to move beyond standard modeling approaches
and towards interactive tools which allow implementers to engage directly with data and models. We believe that
the framework demonstrated in this article will help connect modeling efforts and stakeholders in order to
promote data-driven decision-making for the effective management of malaria, as well as other diseases.

Keywords: Malaria, Decision support, Resource allocation, Data-driven decision-making, Mass drug administration,
Mass screen and treat
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Background
Malaria continues to be a significant contributor to the
global burden of diseases. Mass administration of anti-
malarial drug treatments (MDA) to entire populations
has been used as an intervention strategy for reducing
the global malaria burden [1, 2], particularly during
elimination efforts in the early to mid-twentieth century
[3]. Recently, however, interest in MDA as a viable mal-
aria intervention strategy has reemerged, in particular in
conjugation with emergency responses to non-malarial
epidemics (e.g., the 2014–2015 Ebola outbreak in West
Africa) [4–7] and seasonal malaria chemoprevention in
the Sahel region [8].
Contemporary MDA interventions, primarily through

intermittent preventive treatment and seasonal chemo-
prevention campaigns, have been used to interrupt mal-
aria transmission in low endemicity settings [9], as well
as reduce malaria burden in vulnerable subpopulations,
such as young children and pregnant women, in high
endemicity settings [10, 11]. In traditional MDA inter-
ventions, all individuals in a population or subpopulation
receive treatment regardless of symptoms or other diag-
nostic information. This approach ensures that all sick
individuals receive treatment; however, it also leads to
overtreatment, which may increase the overall cost of
MDA and undermine resource allocation. Modern anti-
malarial drugs, such as artemisinin-based combination
therapy (ACT), can be expensive and often are in limited
supply; therefore, wasting these resources on malaria-
negative individuals can be costly [12, 13]. In addition,
the overuse of ACTs can lead to an increase risk of anti-
malaria resistance [14].
An alternative approach to MDA is mass screen and

treat (MSAT), which consists of first screening the
population with a diagnostic test and then only treating
individuals with a positive test outcome. Because micro-
scopic evaluations and molecular techniques (e.g., polymer-
ase chain reaction) are often not a viable option in remote
regions and/or at large operational scales, diagnosis is in-
creasingly based on rapid diagnostics tests (RDTs) through-
out much of sub-Saharan Africa [1, 15]. RDT screening has
been repeatedly shown to be a viable, cost-effective option
for diagnosing malaria [16, 17]. The widespread use of
RDTs has significantly reduced the use of antimalarial
drugs, helping to reduce the risk of resistance emergence
[18, 19]. In addition to use of RDT in clinical settings,
MSAT relying on RDT outcomes has been shown to be a
cost-effective method for reducing malaria burden in cer-
tain contexts [20]. However, determining when and where
MSAT will reduce the cost of traditional MDA is an im-
portant challenge [9]. On the one hand, despite the poten-
tial of MSAT to reduce costs and overtreatment, there have
been notable failures in field studies in terms of ensuring
long-term improvements in health and educational indices

[21, 22]. The emergence of resistance is a particularly im-
portant concern given the growing consensus that repeated
interventions are necessary for sustaining the impact of
MDA and MSAT [9, 23–25]. A recent Cochrane review
has indicated that 182 studies have assessed the impact of
these types of malaria interventions (MDA and its variants,
including MSAT) [2]; however, few guidelines have
emerged to help decision-makers determine when MSAT
is a more cost-effective strategy than MDA [26–29]. In gen-
eral, MSAT is thought to be the preferred approach in
high- to mid-transmission settings [30], which was sup-
ported by the study from Crowell et al. [3]. In contrast,
however, Walker et al. [31] found that MDA was more
cost-effective than MSAT in all but the highest transmis-
sion settings, and noted that the slight cost deficit in these
areas was likely offset by the additional period prophylaxis
provided to post-intervention infected individuals [32].
Gerardin et al. [33], on the other hand, argued that
in control/pre-elimination settings, the cost of over-
treatment by MDA may mitigate the detection advan-
tage (i.e., ensuring all infected individuals are treated)
and therefore undermine the cost-effectiveness of MDA
compared to MSAT. Corroborating these findings with
field research has been difficult, as much of the observed
data on recent MDA and MSAT applications is held in
gray literature and unpublished reports [2, 9].
Multiple factors can influence the costs of MSAT relative

to MDA. For example, unlike MDA, inaccurate diagnostic
results in MSAT can lead to both overtreatment and
undertreatment. Although RDTs have high overall sensitiv-
ity (above 93%) and specificity (above 95%), a comprehen-
sive review of field studies found substantial heterogeneity
in RDT performance [34]. Additionally, the detection
mechanism differs among different types of RDTs. For ex-
ample, commonly used HRP2-based RDTs such as Para-
check® will fail to detect infections caused by non-
Plasmodium falciparum species or by P. falciparum para-
sites which carry mutations to the HRP-2 gene, resulting
in false negative results [35, 36]. False positive results can
also be an issue, as the HPR-2 protein can persist in the
host for up to 2 to 3 weeks after parasitemia has cleared
[36]. Ultimately, the potential cost-savings advantage of
MSAT over MDA depends on baseline likelihood of infec-
tion (i.e., prevalence), RDT sensitivity and specificity, the
costs of treatment and RDTs, and the costs associated
with false positive and false negative results [33, 37]. How-
ever, many of these factors can vary substantially within
sub-Saharan countries [34, 37], and as a result, it can be
difficult to generalize which strategy is likely to reduce im-
plementation costs in each country/region [38]. Neverthe-
less, identifying the local optimal strategy is important for
stakeholders and policy implementers as national malaria
control programs move away from a “one-size-fits-all”
approach.
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In this article, we outline a conceptual framework for
comparing the cost of malaria intervention strategies
based on the probability of their possible outcomes and
the costs associated with those outcomes, focusing on
the comparison between MDA and MSAT. First, we
demonstrate this comparative framework using hypo-
thetical scenarios for each of these factors. Next, we cre-
ate probabilistic models for estimating malaria
prevalence and RDT performance using routinely col-
lected national-scale survey data (e.g., Demographic
Health Surveys (DHSs) and Malaria Indicator Surveys
(MISs)) to present a real-world application. Finally, using
these models, we build an interactive web application
which allows end-users to compare the expected inter-
vention costs in each region within each country based
on the inputted economic values, thereby extending
these models into decision support tools which allow
implementers to interact with the data and models
directly.

Methods
Estimating intervention costs
The expected cost per person associated with MDA and
MSAT interventions can be estimated as a function of
the costs of implementing these interventions, the costs
associated with the potential outcomes, and the prob-
ability of those outcomes. The possible outcomes for an
individual participant in an MDA campaign are either
true positive or false positive, whereas an individual par-
ticipant in an MSAT campaign may also be true negative
or false negative (Fig. 1).
To determine the probability of each of these potential

outcomes, we calculate the likelihood of malaria infec-
tion p(M = 1), the sensitivity p(RDT = 1 |M = 1), and

specificity p(RDT = 0 |M = 0) of the screening diagnostic
test (model variables are defined in Table 1). In this
framework, testing costs refer to materials used by the
intervention (e.g., RDT, treatment with an ACT), and
outcome costs refer to additional costs related to out-
comes from the intervention (e.g., additional healthcare
costs due to a false negative RDT results). Cost items in-
clude cost of the diagnostic test used for screening
(CostRDT), the cost of antimalarial treatment (CostTrt),
and the outcome costs of false negatives (CostFN) and
false positives (CostFP). Notice that the outcome costs of
false negative or false positive diagnostic outcomes may
incorporate multiple sources of cost (i.e., lost wages due
to illness, deleterious impact of side effects, increased
risk of antimalarial resistance) and that these costs may
occur at varying levels of the overall healthcare system
(e.g., provider costs, individual costs, societal costs). The
per-person expected cost of MDA is given by:

E CostMDA½ � ¼ CostTrt þ CostFP � p M ¼ 0ð Þ

The per-person expected cost of MSAT is given by:

E CostMSAT½ � ¼ CostRDT þ CostTrt � p RDT ¼ 1ð Þþ
CostFP � p RDT ¼ 1jM ¼ 0ð Þ þ CostFN
� p RDT ¼ 0jM ¼ 1ð Þ

where, based on the law of total probabilities, p(RDT =
1) is given by:

p RDT ¼ 1ð Þ ¼ p M ¼ 1ð Þ � p RDT ¼ 1jM ¼ 1ð Þ
þ p M ¼ 0ð Þ � p RDT ¼ 1jM ¼ 0ð Þ

Fig. 1 Conceptual framework for costs of mass drug administration (MDA) and mass screen and treat (MSAT). Flow diagram based on the
potential outcomes and associated costs for each intervention. Testing and outcome costs are shown in blue and red, respectively. FP and FN
stand for false positive and false negative, respectively
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This framework could be augmented through the
inclusion of additional layers of complexity, such as the
inclusion of overall program-level costs and/or an ex-
panded set of possible outcomes (e.g., likelihood of de-
veloping severe malaria and the associated costs), if data
on these costs and outcomes were available. We elected
to develop this individual-level framework which in-
cludes productivity losses, but note that it can be readily
extended to more complex data and applications such as
designating societal and healthcare provider costs.
We used this framework to compare the potential cost

of MDA and MSAT in two contexts. In the generalized
comparisons, we compare costs across all possible base-
line prevalence. The sensitivity, specificity, and costs of
RDTs were based on a recent report from the WHO
[26] and make comparisons using hypothetical scenarios
based on differing costs associated with false negative
and false positive outcomes (Table 2). In the context-
specific comparisons, we use publically available data to
construct models for estimate baseline prevalence as well
as RDT sensitivity and specificity, and apply similar
scenario-based comparisons.

Modeling outcome probability based on prevalence,
sensitivity, and specificity
Description of the data used for modeling
Information on malaria status of children 5 years old
and under was sourced from Demographic and Health
and Malaria Indicator Surveys (DHS and MIS, respect-
ively). These data are freely available, use standardized
sampling procedures, and contain information on a
broad range of malaria indicators, such as age, urbani-
city, and fever history. Recent surveys were selected for
Burkina Faso [40], Cote d’Ivoire [41], Ghana [42],
Guinea [43], Nigeria [44], and Togo [45]. For each

survey, the data are reported at the first order civil entity
below the country level (commonly referred to as “ad-
ministrative area 1”). The official names for these areas
vary between countries; therefore, we adopt the term
“regions” throughout the article for clarity. Note that this
means that “regions” are operationally defined as sub-
areas within individual countries. These West African
countries were selected because they each contain rela-
tively recent standardized country-wide surveys and in-
cluded information on RDT and microscopy (assumed
to be the “gold standard” in this region [46, 47]). The
RDTs used in these are surveys are specific to Plasmo-
dium falciparum, which account for the vast majority of
malarial infections in this region. Individual survey sam-
ple sizes ranged from 2713 to 6112 individuals, distrib-
uted across 6 to 13 regions per country (Table 3).

Modeling prevalence, sensitivity, and specificity
Malaria prevalence and diagnostic performance were es-
timated separately for each country using Bayesian
mixed-effect logistic regression models. Microscopy (M)
was considered the “gold standard” for detecting malaria
infections in this region [46, 47], and RDT (R) was con-
sidered the screening diagnostic test. Let Mijk represent
the binary infection status (as determined by micros-
copy) of individual i from cluster j in region k. We as-
sume that Mijk is given by:

Mijk j pijk∼Bernouli pijk
� �

Table 1 Parameter definitions for expected cost equations

Equation parameters Description

Cost components

CostTrt Cost of treating one person (e.g., cost of
one antimalarial drug)

CostRDT Cost of one rapid diagnostic test (RDT)

CostFP Cost associated with one false positive
outcome

CostFN Cost associated with one false negative
outcome

Outcome probabilities

p(M= 1),p(M= 0) Likelihood of microscopy outcome
(1 = infected, 0 = uninfected)

p(RDT = 0), p(RDT = 1) Likelihood of RDT outcome (1 = positive,
0 = negative)

p(RDT = 1 |M= 0) Likelihood of false positive

p(RDT = 0 |M= 1) Likelihood of false negative

Table 2 Diagnostic performance and costs (in USD) used for
baseline comparison

Diagnostic accuracy

RDT sensitivity* 0.82 to 0.96

RDT specificity* 0.80 to 0.90

Healthcare provider costs (USD)

Cost of RDT* 0.60

Cost of treatment (ACT)* 2.40

Societal costs (USD)

Lost daily wages† 21.55

Scenario costs

Scenario False
negatives

False
positives

A. No cost associated with false positive
or false negative

0.00 0.00

B. False negative equal to cost of RDT* 2.40 0.00

C. False negative equal to cost of RDT*

and potential lost wages†
23.95 0.00

D. Same as C with small offset for false
positives

23.95 1.50

*Based on [26]
†Based on [39]
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where pijk is the probability of infection (e.g., preva-
lence). We constructed the model using just two basic
covariates that could be relevant for the development of
region-specific policy, namely age in months (Ageijk) and
a binary classification of urban/rural environment
(Urbanjk) based on the survey’s definition (see references
in Table 3). Using the logit link function gðpÞ ¼ logð p

1−pÞ,
we model infection probability as:

g pijk
� �

¼ ajk þ β0;k þ β1;k � Ageijk þ β2;k � Urbanjk

þ β3 � Ageijk þ β4 � Urbanjk

This equation includes a cluster-level random-effect
intercept ajk, regional-level fixed-effects (i.e., intercepts
β0, k and slopes β1, k and β2, k), and country-level fixed-
effects (i.e., country-level slopes β3 and urbanicity β4).
In relation to RDT, let Rijk represent the binary test

outcome (1 for positive, 0 for negative) of individual i
from cluster j in region k. We assume that:

Rijk j Mijk ¼ 1; Snijk∼Bernouli Snijk
� �

Rijk j Mijk ¼ 0; Spijk∼Bernouli 1−Spijk
� �

where Snijk and Spijk denote the RDT sensitivity and spe-
cificity, respectively. Both parameters were modeled with
the same set of predictor variables and link function as
pijk.
Individual models for prevalence, sensitivity, and spe-

cificity were created for each country using the “brms”
package in the open-source R statistical software [48,
49]. We adopted the recommended priors based on our
model specification (flat priors for the fixed effects, and
half Student’s t with 3 degrees of freedom and a scaling
factor of 1 for the standard deviation of the random ef-
fects) [49–51]. Due to the large sample size in our data,
these priors play very little to no role in influencing our
results. The fully specified model with the full posterior
is described in Supplemental Material 1. Each model
was fitted using a Hamiltonian Monte Carlo with 4 inde-
pendent chains, each containing a 1000-iteration burn-in
phase and a 1000-iteration sampling phase, resulting in
4000 posterior samples. Parameter convergence was

determined using the potential scale reduction factor
(convergence at R̂ < 1:05) [52].

Designing the interactive framework
Based on the outlined cost functions and associated out-
come probabilities, we developed an interactive frame-
work which allows users to compare the relative costs of
MDA and MSAT in each region (as defined by DHS/
MIS) within each country. This was done using the
“shiny” package in R [53], a package that enables the cre-
ation of web-based interactive applications directly from
R code (instead of HTML, CSS, or JavaScript), which
can then be freely hosted and accessed on the Internet.
Web applications like this can facilitate engagement with
stakeholders and policymakers with limited statistical
and programming backgrounds. Examples of other epi-
demiological interactive tools developed in Shiny can be
found in [54–57].
By using probabilistic models for specifying the out-

come probabilities, we are able to compare intervention
scenarios while incorporating uncertainty. Aside from
inputting cost values, the interface allows users to select
covariate values (i.e., country, age range, and urbanicity),
which then results in an update of the cost comparison
in real time. We used the “leaflet” package in R to create
an interactive map-based visualization of the cost com-
parison [58]. The code used to create this tool is avail-
able at https://github.com/justinmillar/mda-msat. We
also constructed a “generalized” version of the applica-
tion, which allows the user to specify a range for RDT
sensitivity and specificity and compare MDA versus
MSAT over all possible prevalence rates (rather than es-
timating these parameters from data).

Results
General comparisons
Using general cost and diagnostic accuracy parameters
from the WHO [26] (Table 2), MSAT is preferred in
nearly all but the highest disease burden settings when
the cost of false negatives is ignored (Fig. 2a). However,
the costs associated with MSAT increase in higher
prevalence scenarios once the cost of false negatives is
assumed to be equal to the cost of treatment (e.g., an

Table 3 Summary of data sources

Country Survey type Collection period Sample size Regions

Burkina Faso Malaria Indicator Survey [48] September 2014–November 2014 6112 13

Cote d’Ivoire Demographic Health Survey [49] December 2011–May 2012 3344 11

Ghana Demographic Health Survey [50] September 2014–December 2014 2713 10

Guinea Demographic Health Survey [51] June 2012–October 2012 3198 11

Nigeria Malaria Indicator Survey [52] October 2015–November 2015 5127 6

Togo Demographic Health Survey [53] November 2013–April 2014 3215 6
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RDT-negative individual eventually receives treatment;
cost of $2.40 [26]) (Fig. 2b). The individual-level cost of
MSAT can be further undermined if the overall eco-
nomic burden of false negative includes additional costs.
To demonstrate this, if we assume a scenario where a
person whose child has a false negative result also incurs
a day of lost wages (cost of $23.95, based on hourly rate
and assuming 8 h per workday based on the median
monthly income in sub-Saharan from World Bank esti-
mates [39]), in order to take their child to a health facil-
ity to receive care, then screen and treat yields a
significantly higher costs (Fig. 2c). Note that this is just
one potential scenario where the cost of a false outcome
can drastically shift the associated costs. Other scenarios,
such as a false negative leading to a severe malaria infec-
tion, could decrease the benefit of MSAT. Finally, the
primary effect of including a cost associated with false
positive is raising the cost of MDA treatment in lower
burden settings, which is eventually offset by costs asso-
ciated with misdiagnosis in the screen-and-treat scenario
as prevalence increases (Fig. 2d).
In the following section, we present similar scenario-

based realizations using the models fit with national sur-
vey data. These scenarios represent just a small subset of
all the possible scenarios. We believe this demonstrates
the utility of using interactive decision support tools,

which can re-create cost comparisons based on user-
defined scenarios. Also note that these models are fit
using data from young children (6 to 59 months old),
and therefore, the displayed results are related to this
particular subpopulation.

Context-specific observations based on national-scale
survey data
Individual models for malaria prevalence and RDT sensi-
tivity and specificity rates for young children were fitted
for all six country datasets. In each model, all parameters
reached convergence based on the potential scale reduc-
tion factor (all R̂ values ranged between 0.999 and 1.012).
Details on each model are provided in Supplemental Ma-
terial 1, and the regional prevalence, sensitivity, and speci-
ficity estimates are provided in Supplemental Material 2.
The following sections illustrate the influence of the re-
gression parameter estimates, cost scenarios, and param-
eter uncertainty on the cost comparison using survey data
from Burkina Faso as a representative example.

Effect of false negatives
Designating costs specifically related to incorrect diag-
nostic results can have profound impacts on the cost of
the MSAT. Consider the rural communities in Burkina

Fig. 2 Costs of mass drug administration (MDA) and mass screen and treat (MSAT) based on malaria prevalence. Each panel depicts a different
scenario relative to the costs associated with false positive (FP) and false negative (FN) outcomes, as specified in the legends. The lower
estimated cost (y-axis) indicates which strategy will have lower associated costs for a given prevalence rate (x-axis). RDT sensitivity and specificity
ranged from 0.82 to 0.96 and 0.80 to 0.90, respectively, and the cost of treatment and RDT were set to $2.40 and $0.60, based on a WHO report
[26]. The gray-shaded region indicates overlap in expected cost, where the more favorable strategy is unclear due to the range of possible values
for RDT sensitivity and specificity
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Faso (Fig. 3), which fall within the mid- to high-
transmission setting where MSAT is considered to be vi-
able and potentially cost-effective relative to MDA, and
where both clinical trials and mathematical studies have
examined the effectiveness of MSAT [22, 24, 59]. We
chose a favorable cost setting for MSAT by setting RDT
cost to $0.60 and antimalarial treatment cost to $2.55.
These costs correspond to the lower and higher ends of
RDT and antimalarial prices, respectively, based on a re-
cent WHO report [26]. Figure 3a shows the estimated
value added from screening per individual for rural com-
munities in Burkina Faso assuming no cost associated
with false negatives or false positives. As expected, we
find that under these conditions, MSAT is favored in
most regions in Burkina Faso, and there are no regions
that favor MDA. However, MSAT becomes relatively
more costly once we attribute cost to false negative out-
comes. When the cost of false negatives is set to the cost
of the antimalarial treatment, which corresponds to a
scenario where all truly infected individuals will eventu-
ally pay to receive treatment, MSAT becomes less favor-
able. MSAT is only favored in three regions (which had
relatively low prevalence and higher sensitivity), and
there are more regions where MDA may be more favor-
able or there is little expected cost difference between
MDA and MSAT (Fig. 3b). MSAT becomes relatively
more costly as the cost associated with false negatives
increases. Under the hypothetical scenario where a false
negative also incurs a lost 1 day’s wage based on the
minimum wage in Burkina Faso ($6.37 per day, based on
[39]), MDA is favored in all but two regions, despite
relatively high prevalence rates (ranging from 0.26 (CI
0.18–0.36) to 0.66 (CI 0.53–0.77)) (Fig. 3c).

Differences between urban and rural communities
As outlined earlier, there are many factors which influ-
ence malaria prevalence and RDT performance, and
therefore may influence the costs of MDA and MSAT.
One factor that strongly determines these variables is
the differences between urban and rural communities.
Although there is considerable regional-level variability in
malaria prevalence within rural communities in Burkina
Faso, rural communities consistently have higher preva-
lence than their urban counterparts (Fig. 4). Regional RDT
sensitivity and specificity rates also consistently decline
from rural to urban communities (see [34] for RDT per-
formance on varying baseline prevalence). These differ-
ences between urban and rural communities can affect
the costs of both intervention strategies. Figure 5 depicts
the same cost scenarios as Fig. 3 for both rural and urban
communities in Burkina Faso. These comparisons gener-
ally indicate that higher prevalence rural communities will
tend to favor MSAT while lower prevalence urban com-
munities tend to favor MDA, although these comparisons

greatly depend on cost assumptions. The Nord region was
the only region where both urban and rural communities
favored MSAT in all cost scenarios. Interestingly, this was
not linked to the regional prevalence rates, which were
not too different from the other regions (0.16 and 0.47 for
urban and rural communities, respectively), but instead
were associated with having the highest sensitivity and
specificity rates for both community types. This result
suggests that even under a cost scenario which strongly fa-
vors one approach (in this case MDA), there was still a re-
gion where MSAT was favored, which highlights the
importance of diagnostic accuracy in assessing costs at the
country level.

Estimating regional breakpoints for treatment and RDT
costs
In addition to comparing the costs of MDA and MSAT
directly based on specific values for the direct costs of
treatments and diagnostic tests, it may also be valuable
to identify the breakpoints for these costs. For example,
under different scenarios of false positive and false nega-
tive costs, we can use the estimated regional malaria
prevalence, RDT sensitivity, and RDT specificity to de-
termine the cost of RDT and treatment for which MDA
(or MSAT) would reduce costs. Figure 6 illustrates this
using the scenarios in the previous examples for Burkina
Faso, assuming no cost associated with false negatives
(Fig. 6a) and including loss of 1 day’s wage in the cost
associated with false negatives (Fig. 6b). Notice that as ex-
pected, for a given cost of RDT, the cost comparison will
tend to favor MSAT as the price of treatment increases.
Similarly, for a given cost of treatment, MDA is favored as
RDT cost increases. This breakpoint tends to be lower in
rural communities, which typically have higher prevalence
rates, and increases when we include costs associated with
false negative results. For example, the dashed vertical and
horizontal lines demonstrate this relationship using the
RDT and treatment cost for the previous example ($0.60
and $2.55, respectively). Based on these costs, MDA will be
favored in most rural districts whereas MSAT may be fa-
vored in the urban communities for some districts. These
figures illustrate the critical role of the ratio of treatment
cost and screening cost in comparing the costs of these in-
terventions and that regional characteristics (prevalence
and diagnostic test performance) strongly mediate the rela-
tionship between this cost ratio and differences in interven-
tion costs. For example, the Hauts-Bassins region is
highlighted to demonstrate how including an outcome cost
associated with false negative results in a substantial shift
towards favoring MSAT.

Interactive applications
The application based on the “General comparison” section
is available at https://jjmillar.shinyapps.io/msat-general/.
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Following the conceptual framework (Fig. 1), this tool al-
lows the user to set the costs of treatment and diagnostic
test (RDT), the costs of false positive and false negative out-
comes, and a range for the potential diagnostic sensitivity
and specificity. The tool relies on these user-defined inputs
to estimate the cost of MDA and MSAT across all possible

prevalence, generating an output similar to the plots in
Fig. 3. The application based on the data from national sur-
veys and modeling outcomes from prevalence, sensitivity,
and specificity is available at https://jjmillar.shinyapps.io/
msat-example/. This tool allows the user to select the coun-
try and setting (e.g., age range and urban or rural

Fig. 3 Value added from screen then treat among rural communities in Burkina Faso. Regional maps of the mean value added (i.e., MDA costs
minus MSAT costs) and boxplots of value added estimates are shown on the left and right panels, respectively. Positive values (blue) indicate
regions where MSAT is favored whereas negative values (red) indicate regions where MDA is favored. Whiskers in boxplots indicate 95% credible
intervals. When these intervals contain both positive and negative values, there is no significant difference regarding costs between strategies
(gray). Cost of diagnostic test (RDT) and treatment were set at $0.60 and $2.55, respectively. a Added value estimates ignoring any potential costs
associated with false negative results. b Value added estimates when cost associated with false negative results is set to the cost of receiving
delayed treatment. c Value added estimates when cost associated with false negative results includes the cost of receiving delayed treatment
and 1 day of lost wage (based on minimum wage [39]). In all of these scenarios, we assume no cost associated with false positive outcomes
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communities), as well as the same cost parameters in the
first tool. The outputs are similar to the comparisons
shown in Figs. 4, 5, and 6.

Discussion
As described in the comprehensive review by Newby
et al. [9], many studies have been published on the im-
pact and effectiveness of MDA and MSAT. Implementa-
tion of both interventions has experienced both
successes and failures. Moreover, simulations based on
mathematical models comparing the costs of MDA and
MSAT have in some cases provided conflicting recom-
mendations [3, 31–33]. Rather than using mathematical
models, our contribution to this important question of
resource allocation focuses on using statistical models to
quantify the likelihood of different outcomes associated
with each intervention. In addition, we use these statis-
tical models to power interactive decision support tools,
in which users set the cost parameters and interact dir-
ectly with inference from our statistical models in an
open-source, cross-platform format.
We have prioritized a methodology that would be

maximally flexible and accessible, including using famil-
iar publicly available data and relying on relatively sim-
ple statistical models and tools developed in open-
source and free software. There are, however, several
notable limitations associated with these data. First, in
order to model malaria status and diagnostic sensitivity
and specificity, we assumed microscopy to be the gold
standard. While microscopy is considered to be the gold

standard in western sub-Saharan Africa [46, 47], it has
been well established that microscopy-based diagnoses
are imperfect [47, 60, 61] and that several factors (e.g.,
parasite density) can influence the accuracy of micros-
copy [62]. Additionally, while microscopy prevalence
and RDT prevalence are strongly correlated, other re-
search on DHS data has shown that this relationship is
not always linear and that there are additional factors
(such as the proportion of febrile individuals) that can
influence this relationship [63]. By using microscopy as a
gold standard, our analysis also ignores submicroscopic
infections, which typically improve the cost-effectiveness
of MDA relative to MSAT. Submicroscopic infections
can be significant reservoirs for sustaining transmission;
however, they are most impactful in older populations in
low-transmission settings and elimination-phase interven-
tions [24, 64, 65], rather than young children in endemic
settings. We believe that data on more precise diagnostic
tests (such as polymerase chain reaction) should be used if
they were available at national scales. Our methodology
can easily be modified to produce better estimates of RDT
sensitivity and specificity that accounts for submicroscopic
infection, leading to improved cost comparisons.
Second, the approach for estimating costs of MDA and

MSAT presented in this article is intentionally simplistic
because data that would support a more comprehensive
national-level analysis for multiple West African countries
were not available. For instance, in addition to the
individual-level costs, there are also fixed programmatic-
level costs of implementing each intervention, which are

Fig. 4 Comparison of regional-level differences of malaria prevalence and RDT sensitivity and specificity in Burkina Faso for urban and rural areas.
Mean value estimate (circles) and 95% credible interval (vertical bars) for each region are based on 1000 posterior draws from each model. Each
region has a unique shade and is connected by a dotted line to depict differences in parameter estimates between urban and rural communities
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unlikely to be equivalent for MDA and MSAT (e.g., RDT-
based intervention required additional training and stor-
age). Furthermore, we discuss the individual-level cost of
receiving the intervention, but do not take into account
how these interventions influence morbidity/mortality
metrics (e.g., disability-adjusted life-year). Including data
on incremental outcomes would allow for comparing

effectiveness, rather than just overall costs. In particular,
determining which metric to use for the cost-effectiveness
comparison is important for defining the goal of the inter-
vention (e.g., interrupting transmission or reducing mal-
aria burden). We also note that the simplified cost analysis
relying on productive losses may disproportionally favor
MSAT in some of the hypothetical scenarios. More

Fig. 5 Urban versus rural comparison of value added from screen then treat in Burkina Faso. Comparison of regional value added (per individual)
from diagnostic screening (MDA costs minus MSAT costs) between urban (left plots) and rural (right plots) communities. Positive values (blue)
favor MSAT, negative values (red) favor MDA, and 95% interval ranges that contain both positive and negative values indicate no significant
difference (gray). Cost of diagnostic test (RDT) and treatment were set at $0.60 and $2.55, respectively. a Added value estimates ignoring any
potential costs associated with false negative results. b Value added estimates when cost associated with false negative results is set to the cost
of receiving delayed treatment. c Value added estimates when cost associated with false negative results includes the cost of receiving delayed
treatment and 1 day of lost wage (based on minimum wage [39]). In all of these scenarios, we assume no cost associated with false
positive outcomes
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detailed cost analyses, including stratified cost sources, are
still needed and may yield different results to the hypo-
thetical scenarios used to demonstrate the framework.
These could be implemented by designing additional
compartments to the cost components in Table 1.
Finally, if national-level data on malaria prevalence and

RDT performance were available for febrile patients seek-
ing help at health facilities, tools like the one described in
this article could be developed for clinical settings to de-
termine where and when test and treat would be a better
option than presumptive treatment. In this case, one could
also account for other potential outcomes, such as devel-
oping severe malaria (which may have a much higher as-
sociated cost), not adhering to a diagnostic test result, and
the development of adverse side effects to treatment. Such

a tool may be useful for improving adherence to national
policies regarding treatment protocols [66–68].
The WHO recently identified a pressing need for

modeling-based approaches to guide the selection of opti-
mal interventions under different epidemiological condi-
tions [69]. Decision support tools designed specifically for
malaria control, particularly using mapping approaches and
geostatistical models, have become more prevalent in re-
cent years as national survey data have become more
broadly accessible [70–73]. Our framework aims to provide
a decision support tool for stakeholders for comparing costs
associated with MDA or MSAT in different regions. We
have demonstrated that such tools can be created and
adapted using a standard, open-source program, helping to
bridge the gap between methodological advancements and

Fig. 6 Regional breakpoints for cost of treatment and diagnostic test (RDT) in Burkina Faso. Cost points above the line favor MSAT in that region,
whereas cost points below the line favor MDA. Rural and urban communities are depicted on the left and right columns, respectively. a No cost
associated with false negative results. b A cost associated with false negative results which includes the cost of 1 day of lost wages (based on
minimum wage [39]). Each line represents a different region, and the blue line emphasizes the Hauts-Bassins region. In all of these scenarios, we
assume no cost associated with false positive outcomes
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real-world decision-making. This is an important extension,
as traditional scientific articles are often not an effective
way to communicate the practical implications of complex
analysis to policymakers [74]. These decision support tools
are critically important as national malaria control pro-
grams have identified the need to move away from “one-
size-fits-all” intervention and require tools for identifying
optimal interventions based on location-specific conditions
[75]. The applications presented in this article contribute to
the growing pool of decision support tools for guiding mal-
aria control interventions.
Similar to the work by Lubell et al. [70], one valuable char-

acteristic of the support tool presented is interactivity.
Standard results presented in scientific articles are limited to
the parameters or scenarios selected by scientists, which
often do not necessarily match those that would have been
chosen by decision-makers. Furthermore, often, decision-
makers must consider additional information that is either
unknown or unaccounted for by the original developer,
which is only possible if users can explore different scenarios
within the decision support tool. However, similar to using
statistical models without understanding their underlying as-
sumptions, decision support tools can be prone to misinter-
pretation if not carefully designed and described [76].
Furthermore, important properties of the tools presented in
this article are that they rely solely on a freely available
open-source program, can be hosted on web applications
(which makes them platform-independent), and can be
completely built using software regularly used in epidemio-
logical research. Finally, by using a Bayesian framework for
modeling the data and enabling user-defined inputs for cost
parameters, our application allows stakeholders to make in-
formed decisions while taking into account uncertainty in
the outcomes under different cost scenarios.

Conclusion
We present a flexible framework for comparing the cost of
MDA and MSAT and use this framework along with pub-
licly available malaria data from national-scale surveys to
construct an interactive decision support tool. The method-
ology used to create this tool addresses critical issues (e.g.,
cross-platform, open-source, real-time interactivity) with
previous decision support tools for guiding malaria inter-
ventions and can be built using widely used open-source
software. The tool provides a platform for decision-makers
(who may not have a strong statistical background) to inter-
act with statistical models and adjust the parameters to fit
their context and external knowledge in order to support
data-driven decision-making. We believe that similar deci-
sion support tools designed to fit specific malaria interven-
tions and contexts will be valuable assets for guiding data-
driven decision-making for malaria control and elimination
in a way that recognizes the inherent differences between
regions.
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